On the Multiple Sums of Bernoulli, Euler and Genocchi Polynomials

نویسنده

  • Burak Kurt
چکیده

We introduce and investigate the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials by means of a suitable theirs generating polynomials. We establish several interesting properties of these polynomials. Also, we gave some propositions two theorems and one corollary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithms for Bernoulli and Allied Polynomials

We investigate some algorithms that produce Bernoulli, Euler and Genocchi polynomials. We also give closed formulas for Bernoulli, Euler and Genocchi polynomials in terms of weighted Stirling numbers of the second kind, which are extensions of known formulas for Bernoulli, Euler and Genocchi numbers involving Stirling numbers of the second kind.

متن کامل

Fourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials

We find Fourier expansions of Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. We give a very simple proof of them.

متن کامل

Convolution Identities for Bernoulli and Genocchi Polynomials

The main purpose of this paper is to derive various Matiyasevich-Miki-Gessel type convolution identities for Bernoulli and Genocchi polynomials and numbers by applying some Euler type identities with two parameters.

متن کامل

Some symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials

In 2008, Liu and Wang established various symmetric identities for Bernoulli, Euler and Genocchi polynomials. In this paper, we extend these identities in a unified and generalized form to families of Hermite-Bernoulli, Euler and Genocchi polynomials. The procedure followed is that of generating functions. Some relevant connections of the general theory developed here with the results obtained ...

متن کامل

A Note on the q-Genocchi Numbers and Polynomials

have numerous important applications in number theory, combinatorics, and numerical analysis, among other areas, [1–13]. It is easy to find the values G1 = 1, G3 = G5 = G7 = ··· = 0, and even coefficients are given by G2m = 2(1− 2)B2n = 2nE2n−1(0), where Bn is a Bernoulli number and En(x) is an Euler polynomial. The first few Genocchi numbers for n= 2,4, . . . are −1,−3,17,−155,2073, . . . . Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012