On the Multiple Sums of Bernoulli, Euler and Genocchi Polynomials
نویسنده
چکیده
We introduce and investigate the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials by means of a suitable theirs generating polynomials. We establish several interesting properties of these polynomials. Also, we gave some propositions two theorems and one corollary.
منابع مشابه
Algorithms for Bernoulli and Allied Polynomials
We investigate some algorithms that produce Bernoulli, Euler and Genocchi polynomials. We also give closed formulas for Bernoulli, Euler and Genocchi polynomials in terms of weighted Stirling numbers of the second kind, which are extensions of known formulas for Bernoulli, Euler and Genocchi numbers involving Stirling numbers of the second kind.
متن کاملFourier expansions for Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials
We find Fourier expansions of Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. We give a very simple proof of them.
متن کاملConvolution Identities for Bernoulli and Genocchi Polynomials
The main purpose of this paper is to derive various Matiyasevich-Miki-Gessel type convolution identities for Bernoulli and Genocchi polynomials and numbers by applying some Euler type identities with two parameters.
متن کاملSome symmetric identities for the generalized Bernoulli, Euler and Genocchi polynomials associated with Hermite polynomials
In 2008, Liu and Wang established various symmetric identities for Bernoulli, Euler and Genocchi polynomials. In this paper, we extend these identities in a unified and generalized form to families of Hermite-Bernoulli, Euler and Genocchi polynomials. The procedure followed is that of generating functions. Some relevant connections of the general theory developed here with the results obtained ...
متن کاملA Note on the q-Genocchi Numbers and Polynomials
have numerous important applications in number theory, combinatorics, and numerical analysis, among other areas, [1–13]. It is easy to find the values G1 = 1, G3 = G5 = G7 = ··· = 0, and even coefficients are given by G2m = 2(1− 2)B2n = 2nE2n−1(0), where Bn is a Bernoulli number and En(x) is an Euler polynomial. The first few Genocchi numbers for n= 2,4, . . . are −1,−3,17,−155,2073, . . . . Th...
متن کامل